Generation X Study

Propulsion

Mark Underdown

July 27, 2000

Propulsion Topics

- Driving Requirements and Assumptions
- Propulsion Options
 - Solid Motor
 - Electric
- Comparison
- ◆ Additional Trades to Consider
- ◆ Risk Assessment
- ◆ Issues and Concerns

Propulsion **Driving Requirements**

- ◆ Provide delta V from LEO to L2
- ◆ Provide microthrust for detector boom stabilization

Propulsion Boom Stabilization Options

- Thruster on a Chip
- Subliming Solid/Liquid

SUBLIMING SOLID MICRO-THRUSTER

Propellant Pyrex inlet Cover Entrance Hole (from Tank) (Pyrex) Nozzie Entrance (Square Nozzle Contour) Staggered Silicon Comb Filter Substrate Propellant Oulet (Through Nozzle in Si-Substrate)

VAPORIZING LIQUID MICRO-THRUSTER

Propulsion Transfer Orbit Options

- ◆ Solid Propellant Motor
 - Larger than STAR 75
- **♦** Electric
 - XIPS
 - MPD
 - SPT

Propulsion Solid Motor Option

Pro

- Proven Technology
- High Thrust
 - maneuver performed more efficiently

Con

- Contamination
- Low specific impulse
 - requires large propellant mass

Propulsion Solid Motor Option

Approximately twice size of a STAR 75

Performance Goal

Propellant Mass Fraction 0.93

Isp = 290

Propellant mass ~14,000 kg

Propulsion Electric Options

Pro

- High specific impulse >1000sec
 - Low propellant mass

Con

- Requires large amounts of power
- Primarily used for NSSK- Low thrust Devices
 - longer time to reach operational orbit
 - Typical LEO-GEO ~180 days
- Electromagnetic Interference
- Large Propellant Tanks and fluid components not developed

Propulsion

Xe Ion Propulsion System (XIPS)

- High Specific I mpulse and high power
- Significant Heritage DS-1 and HS-701
- very low thrust
- Xe propellant
- 30 centimeters
- 17.6 lbs (8 kg)
- 3100 seconds I SP
- 20 to 92 mN of thrust

Magneto Plasma Dynamic Thruster (MPD)

- High Specific Impulse and High power
- Research Models (Princeton) and Foreign Flight History (ISAS)
- Variety of Propellants
- 20 centimeters
- est. 12 kg
- 1100 seconds I SP
- 20mN to 200 N of thrust

Stationary Plasma Thruster (SPT)

- High Specific Impulse and High power
- Significant Flight History Fakel, RAIME, Loral

- 1.35 kW Engine
- 5.4 kg
- 2000 seconds I SP
- 54 mN of thrust

Propulsion Recommendation

- Solid Motor provides a solution with proven technology but is massive
- MPD thruster requires development but is very adaptable to high thrust applications

Additional Trades

- Combination Solid Motor with Electric Propulsion
- Tankage and Thruster Location

Risk Assessment

- MPD's have flown in pulsed mode application
 - Continuous Firing not demonstrated
 - Possible life issues
- Scale-up to megawatt range being considered for Manned Mars Missions

Issues and Concerns

- Lack of Fluid Components and adequate Tankage
- Technology Development program